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PREFACE

This matenial was originally published in May 1991 as a dissertation, in partial
fulfillment of the requirements for the degree of Ph.D. in Electrical Engineering, The
University of Texas at Austin.




1. INTRODUCTION

The empirical characterization of linear time-invariant (LTI) systems is a subject that
is well-established in the technical literature. The use of deterministic functions (e.g., unit
impulse functons, unit step functions, and controlled sinusoids) for the characterization of
LTI systems is intimately related to concepts governing the analytical characterization of
these systems (e.g., the unit impulse response, the unit step response, and the system
frequency response). The use of non-deterministic signals for the characterization of LTI
systems is intimately related to concepts governing the analytical characterization of
stationary random processes (e.g., covariance functions and the power spectrum). In
either case, the empirical characterization of LTI systems proceeds amid a framework of

familiar analytical concepts.

The analytical characterization of linear time-varying (LTV) systems is also well-
established in the technical literature. Appropriate extensions of concepts governing the
analysis of time-invariant systems provide useful insight into the behavior of systems with
known time-varying parameters. The empirical characterization of continuous-time LTV
systems has received some attention in the technical literature, but the subtleties of applying
these techniques to discrete-time LTV systems and their practical limitations have not been

discussed.

The objective of the following work is the application of techniques for empirically
characterizing discrete-time linear periodically time-varying (LPTV) systems. Specifically,
we wish to characterize certain LPTV structures found in multi-rate quadrature sampling
and quadrature demodulation systems (see Baugh, 1988). Chapter 2 presents methods for
the analysis of LTV systems in both the time domain and in the frequency domain. These
analytical methods rely on the concepts of the time-varying system response function and
the system transmission function (see Zadeh, 1961, Zadeh and Desoer, 1963, D'Angelo,
1970, Claasen and Mecklenbrauker, 1982, and Crochiere and Rabiner, 1983). Chapter 3
presents a discussion of the analysis of random processes generated by LTV systems. The
evolutionary spectral representation of a nonstationary signal and its relation to the
underlying LTV system model is presented. Techniques for the empirical characterization
of discrete-time LPTV systems are presented in Chapter 4. These techniques are presented
within the framework of concepts for the analytical characterization of LPTV and the
signals produced by such systems discussed previously. The limitations of application of
these empirical techniques in practice are also presented. The results of applying these

techniques to LPTV systems of interest are presented in Chapter 5.




2. REVIEW OF THE THEORY OF DISCRETE-TIME LINEAR TIME-
VARYING SYSTEMS

The theory and analysis of discrete and continuous time linear time-varying (LTV)
systems has been the subject of research for some time (see Zadeh, 1961, Zadeh and
Desoer, 1963, D'Angelo, 1970, Claasen and Mecklenbrauker, 1982, and Crochiere and
Rabiner, 1983). Characterizations of such systems in both the time domain using the
concept of the time-varying system response function and in the frequency domain using
various concepts related to the system response function have been proposed. In this
chapter, we will review some of these concepts for the characterization of discrete-time
LTV systems. For a more thorough treatment of the subject, see D'Angelo, 1970,
Crochiere and Rabiner, 1983, and Zadeh and Desoer, 1963.

2.1 TIME-DOMAIN REPRESENTATIONS OF LINEAR TIME-VARYING
SYSTEMS

A discrete-time linear time-varying system may be described mathematically as a

linear mapping of input signals, x(t), to output signals, y(t), so that

Lxm]=y@® . (2.1.1)

The operator L[ ] has the property of linearity; that is, if

Ldxi(] = y1(0) (2.1.2)
and

Ldx20] =y20) (2.1.3)
then

L axp(m+Bx2(t)] = ay1(t) + By2(1) (2.1.4)

for any scalar o and . However, since the operator L | evolves over time,

L x(t+0)] #v(+1) . (2.1.5)




One suitable form for the operator Ly[ ] is the discrete-time superposition sum

y(D) = 2 k(t,7) x(1) , (2.1.6)

T = —o00

where the function k(t,7) is the system response function, or Green's function (see
D'Angelo, 1970, pp. 63-65). In one sense, the system response function characterizes the
response of the system at some time, t, 1o an input applied at time 1. The system can also
be described in terms of a time-varying impulse response, h(t,A), as

y(1) = 2 h(tA) x(t-A) . (2.1.7)
A, = — o0

The time-varying impulse response can be thought of as the response of the system at time t
due to an input signal applied A samples earlier. The system response and the time-varying

impulse response are related by
k(,1) = h(t,t-1) . (2.1.8)

In the discussions which follow, we will concern ourselves primarily with the
system response function, k(t,1). This choice will facilitate our presentation of
characterization techniques for multirate discrete-time systems (e.g., decimators and
interpolators). In these systems, the input and output sampling rates are not the same. Use
of the time-varying impulse response function, h(t,A), could lead to ambiguities in the
characterization of multirate systems since it is not clear what is meant by "the response of

the system at time t due to an input signal applied A samples earlier.”

2.2 STABILITY CONSIBERATIONS FOR LINEAR TIME-VARYING
SYSTEMS

It 1s relauvely craghttorward to show that the system is Bounded Input - Bounded
Ouvtput (BIBO) stable for each t it

2 (1. T)l < oo (2.2.1)
T = - 20




for each t. First, assume that k(t,1) is absolutely summable over 1 for each t and that we
apply some bounded input, x(t), such that

Ix(T)l <« X < o0 (2.2.2)

for all t. It then follows that

ly(ol =1 Z k(t,t) x(0)l < 2 Ik(t.T) x(o)l, (2.2.3)
T = —oco T = —o00
or
lyinl< X 2 k(t, 1)l < oo . (2.2.4)
T = — o0

Now assume k(1,1) is not absolutely summable over all T for some t, and define
x(T) = sgn (k(1,1)) (2.2.5)

for that particular t. We have introduced the function

+1 ; y>0

sgn(y) = oy <0 (2.2.6)

Notice that x(1) 15 a bounded function for all t. The system output corresponding to this

input is given by

y(y) = Z k(t,7) sgn(k(1,7)) = z Ik(t, o)l . (2.2.7)
T = -~ 1 = -

which, by assumption. is unbounded.

Hercatter, we will assume that the systems of interest are BIBO stable for all ; in

other words




Z k(t,7)l < oo (2.2.8)

T =—o00

holds for all t. We make this assumption for two reasons. First, a detailed study of criteria
for the stability of LTV systems is beyond the scope of the present effort. Second, by
making this reasonable assumption on the systems of interest, we obtain interesting and
useful results when we consider frequency-domain techniques for characterizing LTV
systems. For a more detailed discussion of stability issues for LTV systems, see
D'Angelo, 1970, pp. 221-272.

Notice also that equation (2.2.8) implies

lim
T-s0 KD =0 (2.2.9)
so that the contribution to the system output at sample time t due to an input at some sample
time T in the remote past is negligible. In a sense, then, a BIBO stable system can be said
to possess limited memory (see Zadeh and Desoer, 1963, pp. 45-46). This will prove
uscful to us when we consider the estimation of statistical parameters for random processes

produced by stable LTV systems.

2.3 FREQUENCY DOMAIN CHARACTERIZATIONS OF LINEAR TIME-
VARYING SYSTEMS

In order to introduce the concept of a frequency-domain characterization for LTV
systems, let us first consider the characterization of a LTI system in the frequency domain.
For the LTI system, the impulse response function does not vary with time, t, but is a
function only of the time difference, t-t (see Zadeh and Desoer, 1963, p. 154). The

superposition sum for the LTI system is therefore given by

oo

y(h = Y h(t-1) x(1) . (2.3.1)

T = —oo

where h(R) is the familiar LTI impulse response function (see Zadeh and Desoer, 1963,

p- 156). Assume that the input to the LTI system 1s a complex sinusoid of frequency «; in

other words




at

x(1) = € (2.3.2)

for -n < a < w. The output of the LTI system due to this input signal is given by

Yol = 2 hy e’ (2.3.3)

T = ~—o00

or by a change of variables

Yo (0 = Dby et [ (2.3.4)
A =—-
Notice that
Ihy e Y = Ihoul (2.3.5)

for all values of a, so for a BIBO stable LTI system the summation enclosed in brackets in
equation (2.3.5) above converges uniformly to a function which is continuous in & by the
Weierstrass M-test (see Kaplan, 1962, p. 169). Let

Ha = D, hye'® (2.3.6)
A= —oo

so that the response of the LTI system due to a complex sinusoid of frequency o is given
by

y (b = Hiog ' (2.3.7)

The tunction H(a) is referred to as the frequency response function of the LTI system (see
Kaplan, 1962, pp. 95-96). Notice that 1n some sense the frequency response function
indicates how frequency components of the input signal are mapped into frequency

components of the output signal.




Now consider a deterministic input signal, x(t), whose Fourier transform exists

and assume that the Fourier transform of the output signal, defined by

Y(w) = Z yo e

{ = ~oco

exists. Substituting for y(t) in (2.3.8) above yields

Yo = O, Dy henx@me®

l=—-0T = —o

or by a change of variables, and assuming the system is BIBO stable

-]

Y(w) = Z x(t) e " z hd) e O |
A:—oo

T = —0o0

s0 that, since the Fourier transform of the input, x(7), exists
Y(w) = X(w) H(w)

(see Priestly, 1981, p. 210).

(2.3.8)

(2.3.9)

(2.3.10)

(2.3.11)

Equation (2.3.11) presents one of the fundamental concepts of the theory of

frequency-domain characterizations for LTI systems: a Fourier transform can represent a

linear convolution of series in the time domain by a simple product of functions in the

frequency domain. For this reason, a Fourner transform is said to be a compatible

transform for the class of LTI systems (see D'Angelo, 1970, pp. 275-276). One early

approach to the frequency-domain characterization of LTV systems was based on the idea

of defining new transforms which would be compatible transforms over some restricted

class of LTV systems (see Aseltine, 1954, and Johnson and Kilmer, 1962). For example,

the Mellin transform defined by




o0

Y(u) = J y@ 7 de (2.3.12)

is a compatible transform for continuous LTV systems governed by the Euler-Cauchy
differential equation (see Aseltine, 1954). One obvious shortcoming to this approach is
that specific compatible transforms must be developed for each specific class of LTV
cystem, depending on the time-varying differential equation governing that class of
systems. Also, the familiar notion of "frequency” can be lost in the new compatible
transform domain. For example, it is not obvious how the parameter y in the Mellin
transform of equation (2.3.12) above can be related to some familiar notion of "frequency”

for the signal y(t).

An alternative approach, introduced in Zadeh, 1950, and presented for continuous-
time LTV systems in Zadeh, 1961, Gersho, 1963, and Brikker, 1966, and presented for
discrete-time LTV systems in Claasen and Mecklenbrauker, 1982, and Crochiere and
Rabiner, 1983, pp. 100-126, is based on the idea of using an incompatible transform to
obtain a characterization of the LTV system. This incompatible transform retains the
concept of "frequency” of the input and output signals. In order to introduce this concept,
we first consider applying a complex sinusoidal input of frequency o to a LTV system. Let
the response of the LTV system due to this sinusoidal input be denoted as k(t,a). By
equation (2.1.6), k(t,) is given by

K(t,a) = Zk(t,t)emr . (2.3.13)

T = —o00

If the LTV system is BIBO stable for all t, then

Z k(t,0)l < o (2.3.14)
T = - o0

tfor all t, and since

tk(t,7) el = lk(t, o)l (2.3.15)




for all t, by the Weierstrass M-test x(t,a) exists and is continuous in « for all t (see
Kaplan, 1962, p. 169). Note that x(t,) is simply the response of the LTV system to an
applied complex sinusoid of frequency . We could therefore refer to x(t,c) as the time-
varying frequency response function for the LTV system. If the system were time-
invariant, we know from equation (2.3.7) that this response function would be a scaled
version of the original complex sinusoid. In Zadeh, 1950, the time-varying system
function, H(t,a0), for a LTV system is defined to be

H(to) = x(to) e ™ . (2.3.16)

In a sense, the time-varying system function is the complex envelope of the response of the
LTV system to an applied complex sinusoid (see Zadeh, 1950).

Now consider a signal, x(t), whose Fourier transform exists; in other words,

o0

X(a) = z x(1) e " (2.3.17)

T = —oo
exists. We could therefore describe the signal x(1) as

b4
0= [ X e da (2.3.18)
-n

Applying this signal to the LTV system of equation (2.1.6) yields an output signal, y(t),
given by

y(t) =2"t 2 k(t,7) JX(a) e’ da . (2.3.19)
T =—o0 -n

Interchanging the order of summation and integration yields

oo

’t .
yo =5 | 2 ki e | X() dor (2.3.20)
-n T

= — oo

10




Notice that the term in brackets in equation (2.3.20) above is the time-varying frequency
response function, x(t,a). Equation (2.3.20) may therefore be rewritten as

b1

y(t)=§l;j K(t,a) X(a) da (2.3.21)
-

Now assume that the Fourier transform of the output signal, y(1), exists; in other words

Y(w) = Z (v e (2.3.22)

{ = —o0

exists. Substituting equation (2.3.21) into (2.3.22) above yields

1 2 ; -t
Y=L [ ko) X(e) do e (2.3.23)

{=—-0o0o-I

Interchanging the order of summation and integration, we obtain

n (=

Y(w) =5 f Z k(o) e ' X () da (2.3.24)

- I = — o0

For the moment, assume that the summation in brackets in equation (2.3.24) above exists,

and define

o0

K(w.a) = Z K(t,(l)c-l(m . (2.3.25)

l = —o0

Conditions for the existence of K(w,o) and the implications of these conditions will be

examined in Section 2.5. Substituting equation (2.3.25) into equation (2.3.24) we obtain

T
Y= | Ko X da (2.3.26)
-

NI__
A

11




Notice that equation (2.3.26) in some sense gives a description of how input frequency
components contribute to output frequency components. It is not the simple one-to-one
relationship one finds for LTI systems, and it is for this reason that this characterization of
LTV systems is considered to be an incompatible transform technique (see D'Angelo,
1970, p. 294). The function K(w,a) is referred to as the time-varying system
transmission function (see Claasen and Mecklenbrauker, 1982, and Crochiere and Rabiner,
1983, p. 103).

2.4 ANALYSIS OF NETWORK STRUCTURES FOR DISCRETE-TIME
LINEAR TIME-VARYING SYSTEMS

We have introduced time and frequency-domain representations for discrete-time
LTV systems in the previous sections. In this section, we consider the analysis of network
structures obtained by connecting LTV subsystems. Two fundamental structures will be
considered: the parallel connection of two LTV subsystems, and the series connection of
two LTV subsystems. More complicated network structures may be analyzed by extension
of the methods presented below.

Consider two LTV systems with response functions ky(t,7) and k2(t,t). Assume
that the corresponding transmission functions, Kj(w,a) and Ko(w,a), exist for these two
systems. A parallel connection of the systems is indicated schematically in Figure 2.4.1.

The response of the overall system to some input signal, x(1), is

c = )
y(t) = Z k1(t,1)x(t)]+ z kz(t,t)x(t)J. (2.4.1)

T = —o0 T =~

If we were to apply a unit impulse function at some time T = T, to this composite system,
the observed output would be the response function for the overall LTV system for the
fixed input time T = Ty, k(t,Ty). Lct the unit impulse function be denoted by {(1); in other

words define

1. 1t =0
Ctt)={(,

T (2.4.2)

The response function for the overall system is given by




k(t,tg) = z k1(,0)C(t-10) |+ 2 K2(t,0L(1-10) |- (2.4.3)

T= —o0 T = —o0

Simplifying this expression we obtain

k(t,7o) = ki1(t,To) + k2(t,ty) (2.4.4)
in other words, the response function of a parallel connection of LTV systems is simply the
sum of the individual response functions. Also note that if ki(t,t) and ka(1,7) represent
BIBO stable LTV systems, then the overall LTV system is also BIBO stable.

Next consider applying a complex sinusoid ot frequency «a to the composite system
of Figure 2.4.1. We know that the output of the composite system for this input will be

the frequency response tunction for the overall system at frequency a, x(t,a). From

equation (2.4.1) we may express K(t,o) as
K(t,a) = z k(1) c'm + Z, k2(t,1) c'm . (2.4.5)
1= —oe T = —oco

Simplifying this expression, we obtain
K(t,a) = K)(La) + Ka(L,a) (2.4.6)

where xj(t,a) and xa(t,¢t) are the frequency response functions corresponding to ki(t,1)
and k2(t,1). From equanon (2.3.25) we can express the transmission function of the

overall system, K(w,a), as

o)

. ; -t
Kiw,a) = Z (K1) + Kg(«t,(l)) e . 2.4.7)

= —=
Sinplitving this expression we obtain

Kiw.o) = Kjtw.w) + Krtw.w) . (2.4.8)




where Ki(w,a) and K(w,a) are the transmission functions corresponding to kj(t,t) and
k2(t,t). From equation (2. 4.8) we see that the transmission function for a parallel

connection of LTV systems is simply the surn of the individual transmission functions.

Finally, consider the series connection of LTV systems indicated schematically in

Figure 2.4.2. The response of the overall system to some input signal, x(t), is given by

y() = Z k2(LY)y1(y)

‘Y:—oo

where

yi(y) = Z ki(y,o)x(t) .

T = — oo

Combining equations (2.4.9) and (2.4.10), we obtain

y(t) = Z ka(t,y) Z ki (y,0)x(1)

Y:—oo T=~0o0
or simply
y() = z 2 ka(ty) ki(y, 1) | x(1) .
T = —o0 'Y:—oo

(2.4.9)

(2.4.10)

(2.4.11)

(2.4.12)

It we apply a unit impulse at time T = 1, to this composite system, we obtain the overall

system response function for input time T = Tp , k(t,T9). From equation (2.4.12), we

may express k(t,1y) as

0o {

k(t, 1) = Z | z ka(ty) kv, v | L(t-1)

t‘:.——oo\y-_'— o0
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or simply

k(t,70) = 2 k2(t,y) ki(v,70) - (2.4.14)

'Y:—oo

Equation (2.4.14) indicates that the overall system response function at input time T = T,
for a series connection of two LTV systems is the response of the second LTV system
when excited by the first LTV system's response function, ki(Y,75). Notice that, in
general, a different response function (and therefore a different LTV system) is obtained
when we commute the systems kj(t,7) and ko(1,1) (see Crochiere and Rabiner, 1983,
pp. 108-112). Also note that if both kj(t,1) and k(t,t) are BIBO stable LTV systems,
then the overall system is also BIBO stable.

Now consider applying a complex exponential of frequency o to the composite
[.TV system of Figure 2.4.2. The output signal obtained in this case will be the frequency
response function for the overall system at frequency a, K(t,a). From equation (2.4.12)

we may express K(t,o) as

oo

K(t,o0) = z Z ka2(t,y) ki(y,t) f:iolt . (2.4.15)

T = —o0 'Y:-—oo

On simplifying equation (2.4.15), we obtain

K(t,a) = Z ka2(t,y) Ki(y.a) . (2.4.16)

Y = — o0
Consider that we may express k(t,Y) as

i
AP
ka(t,y) = ’2% j K2(t.p) e By dp , (2.4.17)
T

so that equation (2.4.16) can be rewritten as




[~ -]

T
K(t,a):il; f K2(t,B) z K1(,Q) e P dp . (2.4.18)
-

Y= -0

Notice that the expression in brackets in equation (2.4.18) above is the transmission
function for the first LTV system, Kj(w,a). Our expression for x(t,a) therefore becomes

"
ke =5 | o) Ki(B.o) dB . (2.4.19)
-n

Using equation (2.3.25) to obtain the transmission function for the overall LTV system,
K(w,o), we obtain

el n
K(w,a) = Z i j K2(t,B) Ki(B,o) dp e-mn, (2.4.20)
I = —oo -
or simply
T
Ko =5 | KB Ki(B.o) dp . (2.4.21)
-n

Recall that, in some sense, K|(B,a) indicates the distribution of frequency components in
the output of the first LTV system due to a complex exponential input signal of frequency
o. Comparing equation (2.4.21) and (2.3.26), we see that the overall system's
transmission function, K(w,x), is simply the response of the second LTV system due to a
signal with frequency content K{(B.a). Again, note that in general commuting the two
LTV systems yields an overall LTV system with a different transmission function (see
Crochiere and Rabiner, 1983, p. 111).
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2.5 CLASSES OF DISCRETE-TIME LINEAR TIME-VARYING SYSTEMS

The discussions of frequency-domain characterizations of LTV systems using the
system transmission function, K(w,a), presented thus far have been made by simply
assuming that K(w,a) exists. We now turn our attention to the conditions under which
K(w,a) exists and the implications of these conditions on the properties of the LTV

system. Recall that the system transmission function was defined to be

(=~

K(w,a) = Z K(t,o0) e_m)l . (2.5.1)

{ = —o0

Clearly, the existence of K(w,a) intimately depends on the properties of the frequency
response function, K(t,a0). We will consider two classes of LTV system: the class of LTV
systems whose frequency response function is a periodic function of t for all «, and the
class of LTV systems whose frequency response function 1s an almost periodic function of

t tor all a.

First assume that the frequency response function is a periodic function of output

ume t for all o; in other words, assume
K(t, o) = x(t+T(o), o) (2.5.2)

for some T(a) for all . Notice that equation (2.5.2) assumes that the frequency response
function may be periodic with a distinct period, T(a), for each a. Since k(t,at) is a

periodic function in t, it has a Fourier series representation given by

oo

. 12nnt/Tea)
K(t,a) = Z ap(o) ¢ (2.5.3)
= —oo
where
Toon
2rnyTia)
an(aL) = 2 K(toge (2.5.4)
1=




(see Oppenhiem and Schafer, 1975, pp. 88-89). Substituting equation (2.5.3) into
(2.5.1), we obrtain

. F
K(w,a) = Z 2 an(a) ¢ VT et (2.5.5)
{ = —o0o 1= —o0
or simply
-2 Tl
K{w,a) = Z ap(a) 2 el(w mo/Ten . (2.5.6)
= —wo Il = —wo

The term in brackets in equation (2.5.6) 1s given by

>0

-2 T(a)
Z ; i{w-2rn/ ((1)““—'—8((D'2Ttnfr((1)) (2.5.7)

[ = —- oo
where 8(Y) is the Dirac delta function (see Papoulis, 1962, pp. 42-46). Our expression
tor Kiw,o) is therefore given by

K(w.a0) = 2 apla) olw-2rn/T()) . (2.5.8)

nN= —-oo

From equation (2.5.8) above we see that a LTV system whose frequency response
function is a periodic function of time t will possess a system transmission function which

consists of modulated impuise sheets in the (w.a) bifrequency plane.

Finally, assume that the frequency response function is an almost periodic function

of output time t for all «i in other words. for any € > 0, there 1s some T(ot) such that

INtto) - i+ Tean.o)l < € (2.5.9)
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for all a (see Wiener, 1933, p. 185). Since x(t,a) is an almost periodic function for all ¢,
we know that there 1is an increasing sequence of frequencies,
{..., 0. 1(x), wo(a), (), ...}. such that

Ko = D an(a) @t (2.5.10)
N= —oo
where
o
lim -iqy, (o)t
ap(o) = tg—so0 i Z X(t,o) e ' (2.5.11)

l='[0

(see Wiener, 1933, p. 186 and Priestly, 1981, p. 199). Substituting equation (2.5.10)
into (2.5.1), we obtain

i (O .
K(w,a) = Z Z an(o &' 0P O (2.5.12)
{=—-0con=—0c0
or simply
K(w,o) = z an(a) d(w-wp(a)) . (2.5.13)
n=-—oo

Again, we see that LTV systems which possess almost periodic frequency response
functions exhibit transmission functions consisting of modulated impulse functions in the

(w,a) bifrequency plane.

In Claasen and Mecklenbrauker, 1982, the class of LTV systems with almost
periodic frequency response functions is referred to as the class of "stationary” LTV
systems. The authors then point out that, whereas series and parallel connections of LTV
systems with periodic frequency response functions may not yield overall LTV systems
with periodic frequency response functions, series and parallel connections of LTV

systems with almost periodic frequency response functions always yic!d overall LTV
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systems with almost periodic frequency response functions. In the discussions which
follow, we will refer to the class of LTV systems with almost periodic frequency response
functions as simply the class of linear periodically time varying (LPTV) systems.

2.6 IMPLICATIONS OF CAUSALITY ON THE TRANSMISSION
FUNCTION OF LINEAR PERIODICALLY TIME-VARYING
SYSTEMS

Recall from equation (2.5.13) that the system transmission function for a LPTV

system is given by

o

K(w,a) = 2 ap(a) d(w-wp(a)) . (2.6.1)

n= —oo

The system transmission function is therefore non-zero only along the set of curves
w=wy(a) in the (w,o) bifrequency plane. In Claasen and Mecklenbrauker, 1982, it is
shown that for causal continuous-time LPTV systems, the system transmission function is
non-zero only along a set of lines in the bifrequency plane. It is then asserted that causal
discrete-time LPTV systems will similarly possess wy(a) which are linear in o.. In this
section, we will show that causal LPTV systems whose input and output sampling rates are
rationally related do indeed have the property that the function wy(@) is linear in a.

First, consider a one-sided discrete-time signal, s(y); in other words, a sequence
fory=..,-1,0, 1, ... such that

s()=0,7vy<0 . (2.6.2)

Assume that the Fourier transform of s(y) exists and is given by

oo

-i102
S(Q) = Z sty et (2.6.3)
y=0

Now consider the real and imaginary components of S(€2), given by

S(€2) = Sr(€2) +1S1(Q2) . (2.6.4)
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For a one-sided signal, the real and imaginary components of S(2) are related through a
discrete Hilbert transform (see Oppenheim and Schafer, 1975, pp. 339-345). Specifically,
the real and imaginary components of S({2) are related by

T
S =2 (v | Sr(®) cot (Qz—e)de (2.6.5)
-

and

n
SR =- = (pv) | S1©) cot (%Q)d@u(m . (2.6.6)
-

In equations (2.6.5) and (2.6.6), (p.v.) indicates the Cauchy principle value of the
integral. In one sense, the Hilbert transform is a circular convolution of two functions in
€2, and so is itself a linear function in  (see Oppenheim and Schafer, 1975, p. 345).

We must now define precisely what is meant by a causal LTV system. First,
assume that the input and output sampling times, T and t, can be related to some underlying
continuous time parameter, ¢. Specifically, we will assume that output samples are taken at
unit intervals in f, while input samples are obtained at intervals spaced p apart. This 1s
indicated schematically in Figure 2.6.1. By coupling input and output sampling times to
this underlying continuous parameter, we can make some sensible accounting of which
output samples occur after a given input sample. A LTV system with system response
function k(t,t) is defined to be causal if

k(t,t) =0, t < [p1] . (2.6.7)

The notation [x] for some real-valued x indicates the sinallest integer which is greater than
or equal to x. Notice that equation (2.6.8) indicates that observed outputs at time t depend
only on inputs applied at some carlier absoluwe time. Systems for which p = 1 will be
called constant-rate systems, since the input and output sampling rates are the same.
Systems for which p < 1 or p > 1 will be called rate-reduction and rate-increase systems,

respectively.




Assume that k(t,7) is the system response function for a causal, stable, constant-
rate LPTV system. From equations (2.3.13) and (2.3.25), we may express the system
transmission function as

K(m,a):lg_wt gwk(t,t) 0T (2.6.8)
Now consider that

Kiowa)= §;w T gwk(t,‘t) (T et (2.6.9)
or

K(w,w-a)=tgm 12’«, k@) e OV | (2.6.10)

Substituting y = t-1, we obtain

oo

K(w,0-a) = Z z k(yet,r) ¢ YT (2.6.11)

T = —o00 ‘Y:-—-oo

Define the sequence s(¥,1) to be
s(y,7) = k(y+1,1) , (2.6.12)

so that equation (2.6.11) becomes

o oo

K(w,w-0) = 2 Z s(y,r)e'i“’YJe"“‘. (2.6.13)
T = ~o0 Y= —o0
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The summation in brackets in equation (2.6.13) above is the Fourier transform of s(y,T)
with respect to . However, from equation (2.6.10) we know that s(y,T) is a one-sided
sequence; in other words,

s(,1)=0,y<0 . (2.6.14)
If we define
S(w,1) = Z s(Y,1) 'Y = Sr(®,7) + iS{(w,T) , (2.6.15)
Y=-o

then we know that the real and imaginary components of S(,1) are related by
; w-©
=L WY
Si(w,1) = o (p-v.) ;! SR(©,1) cot ( 0 )d@ (2.6.16)

and

n
Sr(w,1) = - 511; (p.v.) | Si(®,1) cot (%) d® + k(t,7) . (2.6.17)
-n
Substituting equation (2.6.15) into equation (2.6.13) and simplifying, we obtain

K(w,0-o) = Z Sr(w,t) cos(at) + Sj(w,T) sin(ot)

T = —c0

+1 2 Si(w,T) cos(axt) - SR(w,T) sin(at) . (2.6.18)

T = —o0

From equation (2.6.18), we may write the real and imaginary components of the

transmisston function as

Kr(w,w-a) = Z Sr(w,1) cos(at) + S{(w,T) sin(at) (2.6.19)

T = —o00




and

Ki(w,ow-a) = 2 Si(w,7) cos(at) - SR(W,T) sin(ar) , (2.6.20)

T = —o0

respectively. Now consider that

T
L(P-V-) | Kr(©,0-a) cot (@)d(a:

2n s 2
1 0-0) .
. ;mi’.‘ (p-v.) T{ SRr(©,1) cot (—2—)d0 cos(aT)
o T
+ z ﬁ(p.v.) I S1(©,1) cot (%Q)d@ sin(at) , (2.6.21)
T = —o0 -

or, by equations (2.6.16) and (2.6.17),

n
’21; (p.v.) ;! KRr(0,0-a) cot (%) doe =

Z Si(w,1) cos(at) - SR(w,T) sin(at) + z k(t,7) sin(at) .(2.6.22)

T = —o0 T =—o00

From equations (2.6.22) and (2.6.20), we obtain

T

Ki(@,0-0) = 5= (p.v.) | Kr(©.0-0) cot (%QJd@-Ho(a), (2.6.23)
-

where

Ho(a) = Z k(t,t) sin(at) , (2.6.24)

T = —o0

an odd function of . Proceeding in a similar fashion, we determine that
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19
Kr(w,w-a) = - ﬁ (p.v.) j Ki(6,8-a) cot (?) d® + He(a) , (2.6.25)
-

where

He(at) = z k(t,7) cos(at) , (2.6.26)

T = —o0

an even function of a. From equation (2.6.8), it is straightforward to show that
bid
L | K@.w-) do = He(w - iHo(@) . (2.6.27)
-n

It should also be noted that equations (2.6.23) through (2.6.27) hold for any causal,
constant-rate LTV system for which K(w,a) exists.

Consider equation (2.6.1) and note that we may express the real and imaginary
components of the transmission function as

oo

Kr(w,w-o0) = Z arn(w-a) 3(w - wy(w-a)) (2.6.28)
N= —oc
and
Ki(ww-a) = Z an(w-a) 3w - wp(w-a)) (2.6.29)
n= —oo

where arn(a) and ajp(a) are the real and imaginary components of ap(a). From

equation (2.6.23), we obtain




o0

Z ajp(w-a) d(w - wy(w-a)) =

= —o0

-]

= —o0

T
2 -21; (p-v.) j aRn(0-a) 8(O-wp(V-a)) cot (9—2—9) d® - Ho(a) . (2.6.30)
-n

Notice that the left-hand side of equation (2.6.30) is identically zero for all W # wp(w-),
which implies that the summation on the right-hand side of equation (2.6.30) is identically
zero for all @ # wp(w-a). This will occur only if 8(w-ws(w-a)) is not a function of w,

in other words only if wp(a) is a linear function of a. We can therefore express wy(a) as

Wp(a) =0 + Won

(2.6.31)

where Wen is some initial offset for the n-th response curve. From equations (2.6.1),
(2.6.27), and (2.6.31), we obtain the relation

n o0
ﬁ J' Kw,w-a) do = Z Ap 8(0-Wop)
-

n=—oo

where
14
Anz( 511t J an(p) dp ]
-t
so that
He(o) = Z ARn 9(0-0on)
n=-o0
and

Hy(a) = Z An O(a-wgn)
N = -2

(2.6.32)

(2.6.33)

(2.6.34)

(2.6.35)




where Arp and AR, are the real and imaginary components of A,. To summarize, we have
seen that a causal, constant-rate LTV system with an almost periodic frequency response
functon has a system transmission function given by

o0

K(w,o) = z ap(a) 3w - a - Wop) . (2.6.36)

n=-oo

From equation (2.6.36) above we see that the transmission function for a causal, constant-
rate LPTV system is non-zero only along a set of lines with unit slope in the (w,a) plane.
The set of offset frequencies, Wgy, in one sense can be interpreted as the response of the
LPTYV system due to a constant unit input sequence and is therefore determined by x(t,0).

Now consider the case of a causal, integer rate-increase LPTV system, in other
words a system for which p =m, an integer. From equation (2.6.8), we have the

relation

K(0,mo-o) = Z Z k(i) e OWT Ot (2.6.37)

l=—007T = —o0

or by a change of vanables

K(w,mo-a) = z z s(Y,T) e 1Oy T (2.6.38)

T = —o0 ‘Y:——oo

In equation (2.6.38), we have defined the one-sided sequence
s(Y,T) = k(y+mt,t1)=0,y<0 . (2.6.39)
The term in brackets in equation (2.6.38) is the Fourier transform of s(y,T) with respect to

Y. so that the Hilbert transform relations of equations (2.6.16) and (2.6.17) still apply.
Proceeding along the same lines presented for the constant-rate system, we obtain




i
Ki(w,mw-a) = ﬁ (p-v.) _f Kr(0,m8-a) cot (_(%Q) d® - Hp(a) ,
-x
where

Ho(a) = Z k(mrt,t) sin(at) ,

T =—00

and

n
Kr(w,mw-a) = - 2Ln (p-v.) f Ki(®,mO-a) cot (m_z(@) dO® + He(av) ,
-

where

He(0) = 2 k(mt,t) cos(at) .

T = —o0

Furthermore, it is straightforward to show that

n

o J K(w,mw-a) dw = He(a) - iHo(at) .

2r -

(2.6.40)

(2.6.41)

(2.6.42)

(2.6.43)

(2.6.44)

It is appropriate to note that equations (2.6.40) through (2.6.44) apply for any causal,

integer-rate-increase LTV system for which K(w,a) exists.

From equation (2.6.1), we may write the real and imaginary components of

K(w,mw+a) as

Kr(w,mw-a) = z arn(Mw-o0) 8(w - Wp(mMw-o))

n = -—oo

and

(2.6.45)




SO

Ki(w,mw-a) = 2 alp(mw-o) 3w - wp(mo-a)) , (2.6.46)

n=-—-c
where arp(a) and ajp(a) are the real and imaginary components of ap(a). From
equation (2.6.40), we obtain

©0

Z alp(mw-a) 3w - wp(mw-a)) =

n=-—-o

Z —(p v.) J arRn(MO-)d(0-w,(mO- a))cot( 29}19 Ho(a) .  (2.6.47)

n:—oo

We can again argue that the only way that both sides of equation (2.6.47) above can be
zero for ® # W (mw-a) is for d(w - w,(mw-a)) to be independent of w. This is the
case only if wp(a) is a lire 1 function such that

wp(a) = “ + Won (2.6.48)

where Won 1s some initial offset for the n-th response curve. From equations (2.6.1),
(2.6.44), and (2.6.48) we obtain

T

5‘;{— J K(ow,mw-a) dw =IE 2 An O(0-wgp) (2.6.49)
- n=-oo
where
. _
An=[ L | an) ap ] (2.6.50)
-n

so that

H(-((l) z ARn 6((1 (l)()n) (2.6.51)

n=-oo
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and

Ho(a) = = 2 Alp 8(a-won) (2.6.52)

m
n= -

where ARy and Ajy, are the real and imaginary components of A,. To summanze, we have
seen that a causal, integer-rate-increase LPTV system has a system transmission function

given by

o0

K(w,a) = z an(a) S(m—%-mon) . (2.6.53)

n=—oc

From equation (2.6.53) above we see that the transmission function for a causal, integer-
rate-increase LPTV system is non-zero only along a set of lines with slope 1/m in the (w,0)
plane. Again, the set of offset frequencies, Wyn, may be determined from x(t,0), the

response of the system to a constant unit input sequence.

Finally, assume that k(t,t) represents a causal, stable LPTV system whose input
and output sampling rates are rationally related, in other words p = m/n for some integer m
and n. For the moment, consider that we could rewrite equation (2.6.8) as

n-1
K(w,o) = 2 Z Z k(tny+) ¢ "D et (2.6.54)
j = — oo | = — o0

Now, forj =0, 1, ..., n-1, define

s =[ "3 } , (2.6.55)

so that, for B = t-tj , equation (2.6.54) can be rewritten as

-1
K((u,a):_n}: z Z k(B+tj, ny+j) e () 'm(BﬂJ). (2.6.56)
J =

:—MB—AOQ

Rearranging terms 1n equation (2.6.56), we obtain
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-l 4 oo oo 1 -1 s THER :
Ka) = S L 5 5 kjBy) e "M Y 1Y (2.6.57)
j = 0 Y = — oo B = — 00
where we have defined the functon
Ki(B.y) = k(b+j, ny+j) . (2.6.58)

A great deal of insight into the behavior of the system represented by ﬁj(B,y) can be
obtained by a careful scrutiny of equation (2.6.58). First, consider that for each j, ﬁ j(B,y)
is the system response function for a stable LPTV system. Stability is obtained from the
fact that

o0

Y kBl (2.6.59)

Y = — oo
1s a subseries of
> kol (2.6.60)
T = — oo

which converges for each B. Similarly, it is straightforward to show that, since
L oo
bm 4 Z 2 k(L) 0T ¢ Ot (2.6.61)

Soo 2l
to lol:-(()‘t::—co

exists for some set of wn(a),

to o
im | 2 z Qj(ﬁ,y) (0Y c-nmn(a)B (2.6.62)
[0——)00 2[() B = -[( Y = — oo

also exists for the same set of wy(a). Finally, consider that
QJ(B,y) =(0forall B <my ; (2.6.63)
in other words. QJ([S.y) 1s a causal, integer-rate-increase system.

The double summation in equation (2.6.57) above is recognized as the system

. . -~ . . A .
transmission function corresponding to QJ(B.y), denoted Kj(w,na). We therefore obtain
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n-1

K(w,a) = Z f(j(w,na) eloU e
1=0

o (2.6.64)

From the discussion of intege.-rate-increase LPTV systems presented above, we know that
A
K;(w,0) is non-zero only along a set of lines defined by

®
W= _—+Won . (2.6.65)

From equation (2.6.62), we know that the wop are ithe same for each integer-rate-increase
system since Wop = Wp(0). By inspection of equation (2.6.64), we may therefore
conclude that the system transmission function for the m/n rational-rate system is non-zero

only along the set of lines defined by

w= % a + Won - (2.6.66)

Again, the set of offset trequencies may be obtained by evaluating the response of the

system to a constant unit input sequence.
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FIGURE 2.6.1
INPUT AND OUTPUT SAMPLE RATE RELATIONS
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2.7 CHAPTER SUMMARY

In this chapter, we have presented some of the fundamental concepts of the analysis
of linear, discrete-time time-varying systems. Both time-domain and frequency-domain
characterizations of discrete-time LTV systems have been presented. The implications of
stability and causality for LTV systems have been discussed, along with a presentation of
the analysis of LTV network structures. The discussion of classes of LTV systems will
prove valuable to us when we begin to consider modeling discrete-time nonstationary
random processes using LTV systems.
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3. MODELING AND FREQUENCY-DOMAIN ANALYSIS OF
NONSTATIONARY RANDOM PROCESSES VIA
LINEAR TIME-VARYING SYSTEMS

The use of linear time-invariant system models has proven very useful in the
analysis of stationary random processes. In general, one may assume an observed wide-
sense stationary random process is the output of a LTI system excited by a purely random
or white noise process (see Koopmans, 1974, pp. 233-238). Frequency-domain
characterizations of the underlying system model yield insight into the spectral content of
the observed random process (see Priestley, 1981, pp. 267-268). Time-domain
characterizations for the underlying system model can be used to predict values of the
observed random process or to filter the random process in some optimum sense (see
Koopmans, 1974, np. 212-217).

In a similar fashion, linear time-varying system models are useful in the analysis of
nonstationary random processes. In this chapter, we will discuss modeling a nonstationary
random process as the output of a LTV system excited by a white noise process. Spectral
representations of the nonstationary random process which can be derived from the
frequency-domain characterization of the underlying system model will then be presented.
A discussion of the implications of the properties of the observed random process on the
characteristics of the underlying LTV system model is presented, with particular attention
paid to almost cyclostationary random processes. Finally, the characterization of certain
classes of nonstationary random processes via the spectral correlation function is presented.
For a more thorough treatment of these topics, see Priestly, 1981, pp. 817-866, and
Gardner, 1986, pp. 301-359.

3.1 LINEAR TIME-VARYING SYSTEM MODELS FOR
NONSTATIONARY RANDOM PROCESSES

In order to introduce the concept of a LTV system model for nonstationary random

processes, we first review the notion of a LTI system model for stationary random

processes. Let {y(t)} be a wide-sense stationary discrete-time random process such that

Ely()] =0 (3.1.1)

and
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E[1ly)’]=0" < .

(3.1.2)

By the Wold decomposition theorem (see Koopmans, 1974, pp. 255-256), we know that

{y(t)} can be expressed as

y(©) = | + (1)

(3.1.3)

where the processes {p(t)} and {v(t)} are uncorrelated zero-mean wide-sense stationary

discrete-time random processes with the following properties:

)

(i1)

{K(1)} can be represented as the output of a LTI filter excited
by a wide-sense stationary, zero-mean purely random (i.e.,

white noise) process. In other words,

u = N Z h(-A) e)

where
Ele(h)e*(A)] = 0” LAy

Furthermore, the LTI system represented by h(A) is causal,
and has the property

2]

D by <o .

X:—oo

The process {v(t)} is purely deterministic, in other words
the present value of {v(t)} may be completely determined by

linear functions of its past values.

(3.1.4)

(3.1.5)

(3.1.6)

For the moment, we will consider the case when the deterministic component of {y(t)} is

not present, in other words assume v(t) = 0 for each t. We make this assumption without

loss of generality since, from property (ii) above we could make a prediction for n(t) from
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past obscrvations of the process {y(t)} and remove this deterministic component from
{y(1)}. We may therefore without loss of generality express {y(t)} as

y() = Z h(t-A) €(A) . (3.1.7)

A= -0

An extension of the Wold decomposition theory for nonstationary discrete-time
random processes is given in Cramer, 1961. Again assume that {y(t)} is a discrete-time

random process satisfying
E[y(n] =0 (3.1.8)
and
2
E[ Iy ] <o 3.1.9)
for each t, but now assume {y(t)} is nonstationary. We can then express y(t) as
y() = p(t) + v(t) (3.1.10)

where the processes {p(t)} and {v(t)} are uncorrelated zero-mean discrete-time random

processes with the following properties:

(1) {u(t)} can be represented as the output of a LTV filter
excited by a wide-sense stationary, zero-mean purely
random process. In other words,

) = 2 k(t,7T) €(1) (3.1.11)
T=—0o0
where
E[s(t,)s*(tg)] = 02 C(1-12) . (3.1.12)
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Furthermore, the LTV system represented by k(t,1) is
causal, and has the property

Y ke P <o . (3.1.13)

T= —oo

(ii) The process {v(t)} is purely deterministic; in other words,
the present value of {v(t)} may be completely determined by

linear functions of its past values.

Consider that, since v(t) is purely deterministic, we can predict its current value from past
observations of y(t) and so remove its contribution from the observed random process. We
may therefore without loss of generality restrict our attention to nonstationary random

processes of the form

y = X k(t,1) &(t) . (3.1.14)

T = —o0

Note that equation (3.1.13) does not ensure BIBO stability for the LTV system for
each t. However, from the theory of Fourier series (see Koopmans, 1974, pp. 19-21) we
know that equation (3.1.13) holds if there exists some function K(t,a), periodic in & with
period 2x, which is continuous for almost all a such that

KLoy= 3 ko) e (3.1.15)

T = ~—~o00

Furthermore, we have the relationship

2r

T oo
L [ ikee Pda= Y ke (3.1.16)
-

T= —oo
for each t (see Koopmans, 1974, p. 20). We will make use of the fact that the frequency

response function for the LTV system model exists when we consider frequency-domain

representations of nonstationary random processes.
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Notice that equation (3.1.13) ensures that the LTV system model will exhibit
limited memory, as discussed in Section 2.2. In other words, the contribution to some
present value of {y(t)} due to an input in the remote past is negligible. Causality of the
LTV system model guarantees that {y(t)} does not depend on future values of the input.
We may therefore argue that input values contributing significantly to {y(t)} at some
present time are distinct from those input values contributing significantly to {y(t)} in the
remote past. If we further assume that the {€(t)} are independent and identically
distributed, then we¢ may make a mixing assumption for {y(t)}, i.e., present values of
{y(v)} are virtually independent of values of {y(t)} in the remote past. This mixing
assumption for {y(t)} will ensure that appropriate statistical averages involving {y(1)} are
asymptotically convergent (see Billingsley, 1968, pp. 166-167).

3.2 SPECTRAL REPRESENTATIONS FOR NONSTATIONARY RANDOM
PROCESSES

Assume (y(t)} is a nonstationary, discrete-time random process satisfying
E[y(h] =0 (3.2.1)
and
2
E[lyml] < e . (3.2.2)

By the discussion presented in the previous section, we know that y(t) can be represented

as

y = D, k(1) £(1) (3.2.3)

T = —o00

where £(1) i1s a zero-mean, wide-sense stationary, purely random discrete-time process with
2
variance ¢ . From the theory of spectral representations for wide-sense stationary random

processes, we know that {€(t)} can be represented as

£(1) = L

5
“~

n
[ ut .
] e dZ(o) (3.2.4)
-n
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where {Z(a)} is a zero-mean complex-valued random process over (-x, ) with orthogonal

increments; in other words,
2
E[dZ(a)dZ* ()] = 2n6~ 8(0ty-at2) doty day (3.2.5)
(see Priestley, 1981, pp. 250-251).

Now consider substituting the spectral representation for €(t) given by
equation (3.2.4) into the LTV system model for y(t) given by equation (3.2.3). Our

expression for y(t) then becomes

n-n

oo 8 .
yo= 3 k(x,r)[zi [ " dZ(a)} . (3.2.6)

T = —0c0

Interchanging the order of summation and integration in equation (3.2.6) above, we obtain

n oo .

ot

y(t)=-21n~ J [ 2 k(t,7) e de(a) . (3.2.7)
- T = —o0

Note that the summation in brackets in (3.2.7) above is the frequency response function for

the LTV system, k(t,a). We know that the frequency response function exists from

equation (3.1.15). Substituting the frequency response function into equation (3.2.7)

above, we obtain

n

y(t)=i f K(t,o) dZ(a) . (3.2.8)
-t

Equation (3.2.8) defines the evolutionary spectral representation of the nonstationary (or
evolutionary) random process {y(t)} (see Priestley, 1965, and Priestley, 1981, pp. 825-
826). As such, it is analogous to the spectral representation for wide-sense stationary
random processes. We will see that this representation of a nonstationary random process
1s useful in the characterization of nonstationary signals. We will also present the
implications ot various properties of the process {y(t1)} on the behavior of the underlying
system model, k(t,7).




3.3 CLASSES OF NONSTATIONARY RANDOM PROCESSES AND
IMPLICATIONS OF LINEAR TIME-VARYING SYSTEM MODELS

We have seen in the previous section that a zero-mean, finite variance nonstationary
random process {y(t)} may be modeled as the output of a LTV system excited by a wide-
sense stationary random process; in other words,

yh = X k(t,T) €(1) . (3.3.1)

T = —o0

The evolutionary spectral representation of the process, given by

1

n
yo =25 |t dz@) | (3.3.2)
-

was also presented. Consider from equation (3.3.2) that the statistical properties of the
random function, {y(t)}, are intimately related to the properties of the frequency response
function of the underlying LTV system model, x(t,0). In this section we will consider the
implications of the system response function, x(t,t), on the statistical properties of {y(t)}

for the class of almost cyclostationary random processes.

Define the (symmetric) autocorrelation function for the random process {y(t)} as
Ryy(tA) = E | y(t+)y*(t-h) | . (3.3.3)

The random process {y(t)} is said to be almost cyclostationary if Ryy(t,A) is an almost
periodic function of t for each A (see Gardner, 1986, p. 302). In other words,

(=]

Ryy(th) = X r(d) e

Nn=-oo

10! (3.3.4)

where
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. T .
lim | -1t
) = 5T 1=2-T Ryy(tA) € (3.3.5)

and {9} is a sequence of increasing frequencies independent of A.

The random process {y(t)} is almost cyclostationary if the underlying LTV model
for {y(t)} has a frequency response function which is almost periodic in t for all a, in other
words if k(t,t) represents a LPTV system. In order to understand this, first assume that the
frequency response function for the underlying LTV system model is almost periodic in t.
From the discussion of almost periodic frequency response functions presented in Chapter
2, we know that

oo

K(t,a) = 2 an(Q) elw"(a)[ (3.3.6)
Nn= —oo
where
lo .
1 -1, (o)t
aw@) = 5 2-:'0 x(taye ™. (3.3.7)
From the LTV system model for {y(t)} given by (3.3.1), we obtain
< 7 1w, (ot
y= 3% 5o [ a(e ™ dZ(e) . (3.3.8)
n= -oo -

Substituting equation (3.3.8) into the expression for Ry,(t,A) given by equation (3.3.3)

and simplifying, we obtain

Ryy(t,}\)=0'2 2 k(t+A Dk (A1) . (3.3.9)

T= —co

[t is straightforward to show that
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2 R
Ryy(t,A) =%:- J K(t+A,00) k™ (t-A,a) da . (3.3.10)

-n
Substituting for x(t,a) from equation (3.3.6) into (3.3.10), we obtain

2

R
Ryy(t.A) = = .[
-7

o imn(a)(t+l)e-iwm(a)(t-l) da

s
M8

ap(@)a* (o) €

N= —o° M= —oo

(3.3.11)

Recall that the LTV system represented by k(t,7) is causal, and so from the discussion of

causal LPTV systems presented in Chapter 2, we know that
Wp(Q) = poL + Wy, - (3.3.12)

Our expression for Ryy(t,k) can therefore be rewritten as

2 oo T : :
2 A -
Ry =2 X X [ anteonmene! PHTont om g ! (onom)t.
nN=—° [=—o0 — N
(3.3.13)
Notice that the sequence
(Won-Wom: N=...,-1,0,1,...;m=__-1,0,1, ...} (3.3.14)
can be thought of as a sequence
(0;: j=...,-1.0, 1, ..} (3.3.15)
of distinct, increasing frequencies. Now define
? 4 2 A
. .
n =0 Y | anatyton PO o g (3.3.16)
TONM; -T

where the set
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NM; = { nm: Wop-@om=0j} - (3.3.17)

Our expression for Ryy(t,k) may therefore be rewritten as

oo

Ryy(tA) = 2, 1(h) ¢ (3.3.18)

J:-N

in other words, Ryy(t,l) is an almost periodic function in t. So, if the underlying LTV
system frequency response function is an almost periodic function of t, then {y(t)} will be

an almost cyclostationary process.

Next, assume that {y(t)} is almost cyclostationary, but the frequency response
function for the underlying LTV system model is not almost periodic. In other words,

assume that
) o .
lim -1t
e T Z{,O k(o) e =0 (3.3.19)

for any choice of w or a. Consider that equation (3.3.19) implies that
< -iot
Y k(o) e (3.3.20)
=

exists for all w and a. Since the product of convergent series is convergent,

equation (3.3.20) implies that

ad - -0yl -iest
Z Z K(tl,(l)K‘*(lp_,(l) e 'le 272 (3.3.21)
] = -o0 [ = -0
exists, or by a change of vanables,
(& o (& o) ) _. l -- ;\.
2 2 KOHA QK (A0 ¢ ' ¢ v (3.3.22)
}\ = -oo { = -
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exists for all ¢ and y.

Since {y(t)} is almost cyclostationary,

T

lim .
T—roo EIT 2 Ry(th)e at (3.3.23)
t=-T

exists and is nonzero for some sequence of {¢,} and some A. From equation (3.3.10), we

obtain

. T
lim -
e 317 Y krh ok e e da (3.3.24)

=T

Aa gy

exists and 1s nonzero. Notice that equation (3.3.24) implies that

lim

T
) * ont
== K(t+A,)K (t-A,00) € (3.3.25)
Toeo 2T 53

exists and is nonzero over some interval in a. Moreover, equation (3.3.25) implies that

oo

Y k(t+ra)k* (A, 0) e 0n! (3.3.26)

{=-c0

diverges. Notice that if the sum in equation (3.3.26) diverges, then the sum in
equation (3.3.22) also diverges, which is a contradiction.

From the discussion presented above, we see that the characterization of almost
cyclostationary random processes is intimately related to the characterization of LTV
systems with almost periodic frequency response functions. We will make use of this fact
when we cons:der the empirical analysis of LTV systems in Chapter 4.
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3.4 SPECTRAL CORRELATION FUNCTIONS FOR NONSTATIONARY
RANDOM PROCESSES

The conventional power spectrum has proven to be a useful means of characteriziiig
wide-sense stationary random processes in the frequency domain. Varicus extensions of
the concept of the power spectrum for nonstationary random p:ocesses have been proposed
over the years (see Lyones, 1968, and Cohen, 1989, for a review of the subject). In this
section, we will discuss a technique which has proven useful in the study of finite-energy
and almost cyclostationary random processes. This technique 1s based on the fact that, for
a nonstationary random process, correlation exists between distinct frequency componenis
of the spectral representation. Estimates of the spectral correlation function therefore
provide a means of characterizing the random process 1n the frequency domain. For a more
thorough treatment of the subject of spectral correlation functions, see Gardner, 1986,
pp. 301-359, and Bendat and Piersol, 1986, pp. 447-468.

Assume that {x(1)} and {y(t)} are discrete-time random processes such that

E[x(1)]=0, (3.4.1)

E[ 1x()1° ] <o | (3.4.2)
and

| x(1) | < o0 (3.4.3)

for each t and for every realization of {x(1)}, and such that

E[ vy |=0 . (3.4.4)
2
Ef ly(th)]" | <oeo . (3.4.5)
and
Pyl < oo (3.4.6)

48




for each t and for every realization of {y(t)}. Define the finite-duration Fourier transforms
of {x(1)} and {y(t)} as

19 .
Xolw) = 2, x(m)e " (3.4.7)
1=-10
and
9 -iwt
Yo =D, y)e . (3.4.8)
t=-10

Note that both Xp(at) and Yo(w) exist since, from equations (3.4.3) and (3.4.6), they are
finite sums of finite-amplitude sequences. Formally define the cross-spectral correlation
function as

lim  hm

Syx(@.0) = " 1 see E [ Yo(@)Xo™(@)] (3.4.9)

(see B.ndat and Piersol, 1986, pp. 448-450). Notice that, in some sense, the cross-
specaal correlation function indicates the amount of correlation between distinct spectral
components of the two random processes, {x(t)} and {y(t)}. Substituting the definitions
for the finite-duration Fourier transforms given by equations (3.4.7) and (3.4.8) into
(3.4.9), we obtain

. . 0] 10 . .
Syx(@) =, M Im §§ e @) et e (3.4.10)
g0 Tg—>o0 1o T=To

where we have defined the (asymmetric) autocorrelation function
Ryx(t.) = E[y( x*(1)] . (3.4.11)

Assuming that the limit in equation (3.4.10) exists, we obtain
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Syx@® =Y, Y, Ryx@tne e

(=<0 T=-00

(3.4.12)

For the moment, assume that {x(t)} and {y(t)} are wide-sense stationary random

processes so that

Ryx(1,1) = Ryx(t-1) . (3.4.13)

From equation (3.4.12), we obtain

Syx@w = 3 Y Ryxtve e, (3.4.14)
{=-c0 T=-00
or by the change of variables A = t-T,
< - -iwA | - w-o)T
Syx(@a) = Y, (2 Ryx(A) e }e : (3.4.15)
Tz=-00 }\;-oo

Notice that the summation in brackets in equation (3.4.15) above is the conventional cross-
power spectrum, Syx(w) (see Bendat and Piersol, 1986, p. 121). Equation (3.4.15)

therefore becomes
Syx(w,00) = Syx(w) §(w-00) . (3.4.16)

In other words, wide-sense stationary random processes exhibit spectral correlation only
on the line ® = a in the (w,a) bifrequency plane.

Consider the system indicated schematically in Figure 3.4.1. The purely random
process {€(1)} excites an LTV system represented by k(t,7) to produce the nonstationary
random process {y(t)}. This same purely random process also excites the LTI system
represented by h(t) to produce the wide-sense stationary random process {x(t)}. From the
discussion of Chapter 2, we know that x(1) is given by
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x(®= 2, h(t-A)eh) . (3.4.17)
A=-00

From the spectral representation of {€(t)} given by equation (3.2.4), we obtain

T o '
x(1) =517; J E h(t-A) ewk dZ(y) , (3.4.18)
- =-00
or simply
n .
X(D) = 5 | nep ™ azey | (3.4.19)
“ton

where H(y) is the frequency response function of the LTI system given by
equation (2.3.6). Substituting equation (3.4.19) into the definition of Xg(o) given by

equation (3.4.7), we obtain

n 0
Xo(e) =5 [ HEp ( Y T ]dzm. (3.4.20)
-n T=-T¢

Recall from equation (3.2.8) that {y(t)} admits the evolutionary spectral representation
T
yo =2 | k) dz) . (3.4.21)
-

Substituting equation (3.4.21) into the definition for Yo(w) given by equation (3.4.8), we
obtain

Yo(w) =

A
2n

0] .
(Z k(toye ]dZ(a) : (3.4.22)
t=-1y
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From the definition of the cross-spectral correlation function given by equation (3.4.9), we
obtain

lim  lim N
Syx(@o) = T E[Yo@Xo'(@)]

n

2
-2 | KB H*®) 5B B (3.4.23)
-n
or, simply,
o2 *
Syx(w,a) = o K(w,a) H (o) . (3.4.24)

Notice that equation (3.4.24) gives a very straightforward relationship between the cross-
spectral correlation function for {y(t)} and {x(t)} and the linear systems which produced
these random processes. We will make use of this fact when we consider the empirical
analysis of linear time-varying systems in Chapter 4.




» k(1) » y(t)
£(7)
L—p h(T1) —» x(7)
FIGURE 3.4.1

AS-91-367

LTV AND LTI SYSTEMS EXCITED BY A *URELY RANDOM PROCESS
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3.5 CHAPTER SUMMARY

In this chapter we have introduced some of the fundamental concepts regarding the
modeling of nonstationary random processes using linear time-varying filters. The use of a
frequency-domain characterization of the LTV system model to obtain an evolutionary
spectral representation for a nonstationary random process was also presented. Finally, the
relationship between the LTV system models for nonstationary random processes and the
spectral correlation function for these random processes was presented. In the following
chapters, these concepts will be applied to the characterization of LTV systems excited by

random signals.
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4. CHARACTERIZATION OF LINEAR PERIODICALLY
TIME-VARYING SYSTEMS

In previous chapters, we reviewed the principal methods for analytically describing
a discrete time linear time-varying system and noted the properties of such system
descriptions. Techniques for the frequency-domain analysis of the nonstationary signals
arising as the outputs of time-varying systems were also presented. We now turn our
attention 10 the problem of empirically characterizing LPTV systems. To be more specific,
we require techniques for obtaining a reliable estimate of the system transmission function,
K(w,a), for a given LPTV system. The development and assessment of these techniques
will rely heavily on the concepts and definitions presented earlier.

4.1 CHARACTERIZATION OF LINEAR PERIODICALLY TIME-
VARYING SYSTEMS via DETERMINISTIC SIGNALS

Recall the definition of the time-varying system transmission function, K(w,a),

given by equation (2.3.25)

o0

Koo = 3 xtaye 4.1.1)

Il =—o

where x(t,a0) is the time-varying trequency response function. Since K(t,o) 1s defined as
the response of the LPTV system to a complex sinusoid of frequency o, the system
transmission function can be viewed as the Fourier transform of the output signal produced
by an applied complex sinusoid of tfrequency o. This observation suggests that one
straightforward method of estimating the system transmission function for a given LPTV
system would be to apply a complex sinusoid of a known frequency, observe the resulting
output signal, and compute an estimate of its Fourier transform. This would yield an
estimate of the system transmission function, K(w,a), for some specific input frequency,
o. Estimates of the system transmission function for other input frequencies could be

obtained by repeating this process for each desired input frequency.

Consider applying a complex sinusoid of frequency o to a causal, stable LPTV

system. Assume that the input signal, x(T), as given by

.. T
X(T) = cos(OT) + | sIN(AT) = c“l . (4.1.2)
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has been applied to the system of interest for a sufficient time for the system to have
reached a steady-state condition. If we obtain N samples of the resulting output sequence,
y(t), we may compute the Fourier transform of the output sequence, Y(®), as

N-1 .
Yo)= Y, kta)ye (4.1.3)
t=0
From the properties of the Fourier transform, we obtain
R
Y(w) =# J K(y,a) Fn(y-®) dy , (4.1.4)
-n
where Fn(y) 1s the Fejer kernel, defined as
i
Fnp= 2, e (4.1.5)
t=20

(sece Papoulis, 1962, pp. 42-47). For N sufficiently large, the Fejer kernel may be

approximated by a Dirac delta function, and so

Y(w) = K(w,a) . (4.1.6)

Several points can be made concerning the method of estimating K(w,o) presented
above. First, the accuracy of the approximation of K(w,a) by Y(w) is intimately related to
the available length of observed data, N. This issue of distortion of the estimate of K(w,o)
due to finite data lengths closely parallels the issue of distortion of spectral estimates due to
finite data lengths. The familiar method of applying a windowing function to the observed
data to reduce the effects of finite data lengths could also be applied to improve our estimate
of K(w,at) (see Harris, 1978). Secondly, this method provides an estimate for K(w,o)
tor some specific input frequency, a. Estimation of K(w,a) tor other valucs of o requires
that the frequency of the applied signal be changed and that a new record of the output
sequence be obtained after sufficient time has passed for a steady-state condition to be

reached.
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The final point to be made regarding this method relates to the generation of the
applied input signal. For a digital implementation of the LPTV system, obtaining a
complex sinusoidal input is a relatively straightforward matter, involving no more than the
generation of a sequence of sines and cosines. However, in a LPTV system in which
analog signals are digitized and then processed to obtain digital sequences, it is impossible
to generate a complex input signal. One may overcome this problem by applying two
separate input signals, cos(at) and sin(at), and computing the Fourier transforms for each
resulting output sequence separately. An estimate for K(w,a) could then be obtained from
these two Fourier transforms. To illustrate, let ygr(t) and yi(t) designate the outputs
obtained from the LPTV system due to application of the input signals cos(at) and
sin(at), respectively. By linearity of the system of interest and of the Fourier transform,

we have
Yr(w) +i1Y(w) = Y(0) = K(w,0) , (4.1.7)

where Ygr(w) and Yi(w) are the N-length Fourier transforms of ygr(t) and y(t),

respectively.

Note that the accuracy of our estimate for the system transmission function is now
dependent on both the length of the observation interval and on the relative phase of the two
input signals. Assume that there is a phase error of ¢ between the two input signals; in
other words, assume that we apply cos(at) and sin(at + ¢) at the input of the LPTV
system. For small values of phase error,

sin(t+9) = sin(at) + dcos(at) , (4.1.8)

so that

Xo(T) = cos(aT) + 1 Sin(t+Q) = eIOLt + 2— c_lm . 4.1.9)

Forming our estimate for the system transmission function as before, we obtain

Yolw) = K(w,a) +% K(w,-a) . (4.1.10)
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The significance of this distortion in our estimate of the system transmission function
depends on the magnitude of the phase error and on the nature of K(w,o).

4.2 CHARACTERIZATION OF LINEAR TIME-VARYING SYSTEMS via
NONDETERMINISTIC SIGNALS

We now consider a technique for estimating the system transmission function of a
LPTYV system by observing the response of the system to a nondeterministic input signal.
This technique is based on the observation made in Section 3.4 that the cross-spectral
correlation function between the ouiput of a LPTV system and the random input to the
system is directly proportional to the LPTV system transmission function. In this section,
we will derive the approximate statistical properties of the estimated cross-spectral
correlation function and of the estimated system transmission function.

Let {€(1)} by a wide-sense stationary, complex Gaussian purely random process

satisfying

Elem]=0, (4.2.1)
and

E[e(n)e'(tz)]={ s Poake (4.2.2)

Next, assume that (€(1)} is applied to the input of a causal, stable LPTV system with the

simple system transmission function

K(w,a) = Ho(at) S(w-wo - %) , (4.2.3)

where p 13 the rate of the system. Note that for this LPTV system, K(w,a) is non-zero
only along the line

(4.2.4)

More sophisticated LPTV systems may be considered to be linear combinations of systems

of this particular form.
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Recall from equation (3.2.4) that the spectral representation for {€(t)) is given by

1!

&(t) = 5= I P azp) (4.2.5)
-

The K-length discrete Fourier transform of {€(t)} is given by

K-1 )
Exa) = D, e(r)e ", (4.2.6)
1T=0
where
ak=g£—k, k=0,1,.. K. 4.2.7)

Substituting for the spectral representation for {€(t)} into equation (4.2.6), we obtain

™
Exiow =5 f Fi(B-0u) dZ(B) . (4.2.8)
N

where Fx(p) is the Fejer kernel of equation (4.1.5). From equation (4.2.8) we see that the

{EK(ak)} are a set of zero-mean, complex Gaussian random variables. Furthermore,

note that
1
* G? *
E| Ex) € k(o) =5 Fr(B-ou) Fg(B-a) dp . (4.2.9)
R
or simplifying,
Yol i Kol ik o=
E[Sk(ak)e K(OLJ)J—4l 0 clse . (4.2.10)
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so that {Sx(ak)} are a set of i.i.d. complex Gaussian random variables with zero mean

and variance Ko?2.

Now define the N-length discrete Fourier transform of the system output, y(t), as

N-1 )
Yn(wn) = ZO y(1) e Ont 4.2.11)
{=

Recall from equation (3.2.8) that we may express y(t) as

n

¥y =5 j K(to) dZ() | (4.2.12)

-

where K(t,) is the system response function. For the LPTV system under discussion,
n
K(LY) = 5= j Ky e dt (4.2.13)
14

or

k(1Y) = Ho(y) exp{ i(w, +—g)t ). (4.2.14)

Substituting for the system response function in equation (4.2.12), we obtain

s
y(v = 5- J- Hon expl iCwo + )1 } azay) (4.2.15)
-n
so that
Yn(wy) = 5];(‘ J. l’l(,(“{) FNn ((l)n-(l)n ‘g ) dZ(Y) . (4.2.16)
-
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Notice that the { Yn(wy)) are a set of complex, zero-mean Gaussian random variables.
Furthermore, consider that

T
2
E (Ynt@n) Y'n@)} =2 [ ol By (0o, 2 F'n (@00 - dv4.2.17)
-n

so that for N sufficiently large,

2 .
E {Yn(@n) Y¥n(w)) = { No? [Ho(p(wn-0o))l insi (4.2.18)

Now consider choosing N, the length of the output DFT, and K, the length of the
input DFT, so that

% =p (4.2.19)
2rn 2nk .
For any w, = N and any oy = K We may write
- %«»%‘:mn_k +9“-)£ . (4.2.20)

From equation (4.2.20) we note that the set of points

{ (WpemOkem): m=0, 21, ..., M/2) (4.2.21)
lie along a line of slope é passing through the point (wy.0).

Now consider the two-dimensional complex random variable

1 *
[(wn.0) = § Yn(wn) € ke (4.2.22)

Note that

ol




Q

E {I(@no0)]} =y

[

n

9
2
J Ho(Y) FN(mn-(no-g) F*K(y-ak) dy , (4.2.23)
-

or, for N and K sufficiently large,

. — A
E (Iopop) =4 O Ho(P(@n-00) 5 @n=wo+ F (4.2.24)
0 : else
Furthermore, note that
2 2 o4 2
E { | Kwno) "} =1 E { (om0} | +F| Ho(p(wn-wo)) |7, (4.2.25)
so that
o? 2
Var { I{wn,0ay) } = r | Ho(p(wp-wo)) I . (4.2.26)

From equations (4.2.24) and (4.2.26) we see that I (w,,0) is an inconsistent estimator

for the system transmission function.

Recall that our choice of N and K led to a set of discrete frequency points such that
{ (Opem.-Ckam): m =0, £1, ... , + M/2} lies along a line of slope 1/p in the (w,a)
bifrequency plane. If we assume that K(w,u) is essentially constant over this set of points,

we could consider estimating K(w,ot) by smoothing I(wp,0). Define the random variable

M;2

SMWat) = pr 2 1 (@nemiOkem) (4.2.27)
m = -M/2
and note that
M/2
E{ Smwna ) =y, 2 E{ Kommem) ) - (4.2.28)
m=-M/2
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For N and K sufficiently large, and assuming that K(w,&) is constant over the set of points
{ (Opem:Ok+m): M =0, %1, .., £ M/2 }, we obtain

2 . = Gk
E { Sm@nay) } ={ O Hol0k) 3 @n =0+ 758 (4.2.29)
0 ; else

Further, note that
2 2 o4 2
E{ | Sm(wnox) '} =1 E {Sm(wn,0)} I + o) | Ho(p(oa-wo)) |, (4.2.30)
so that
c 2
Var { Sm(0Wq,0k) } = M) | Ho(p(wn-wo)) I . (4.2.31)

If we pick M so that as M, N, and K increase without bounds M/N — 0 and M/K — 0,

then Sp{wy,,a) is a consistent estimator of the system transmission function.

We now consider the statistical properties of Sm(wp,0tx). First, notice from
equation (4.2.27) that

M/2

1 *
S (@n,00) = 557 EM/z 5 YN(@nam) € K(@m) - (4.2.32)
m= -

For M sufficiently large, and for w, # o, + gpl,

x
{ Yn(@nem) € Klagom): m=0,%1, ., + M2 } (4.2.33)

are a set of uncorrelated, identically distributed complex random variables. We can

therefore argue that Sp(my.0) is approximately Gaussian distributed with zero mean and
. a4 / 2 ok - .

variince F;(':{T’I Ho(plwn-0,)) 7. For o, = o, + B“w, Sm(w,,0) is approximately

Gaussian distributed with mean o°Hy{p(2,-0,)) and variance DM 1) I Ho(p(wp-we)) 1.
+
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Finally, assume that we estimate the noise variance, 02, from the given
observations of {e(t)} as

K-1
2
=0

2
where x 2K is a chi-square distributed random variable with 2K degrees of freedom. Our

estimate for the system transmission function is therefore givern by

l‘Sp,/[((x)n,otk) . (4.2.35)

Q(mn’ak) = 62

For K large, B2is approximated by
82 =027 (4.2.36)

where 1 is a Gaussian random variable with unit mean and variance 1/K. Our estimated

system transmission function is therefore approximated by

Hogg(wn‘wo)) ok
K(wq,ak) + B, W= W0y + —
\/p(M+1) " ° p

Ho(p(wq-0o)) "
\Jp(MH)

Riw,a) = . (4.2.37)

; else

where [ is a complex, zero-mean, unit variance Gaussian random variable.

Now consider a more sophisticated LPTV system composed of linear combinations

of systems of the form assumed above. In other words, assume that

Kwo) =3 Hy(o) 8(w-w,- g ) (4.2.38)
V)

for some set of distinet {w,}. Notice that EK(ak) 1s still described by equation (4.2.8),

but that now
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bid
Y@ =2 5 J Ho(Y) Fn(wn-wo-g) dzZ(y) . (4.2.39)
o -
Since the {w_} are distinct, for N sufficiently large we obtain

2 .
E { Y N () Y*N(mj) } ~ No? zo lHo(p((“)n‘mo))| » n=31 (4.2.40)

0 ; else

If we again define I(wp, o) by equation (4.2.23), we obtain

oy i A
E { onoto) } z{ 02Ho(ak) 3 Wn = o+ ° (4.2.41)
0 ; else
and
4
var { {wnox) } =%IZ Ho(p(0n-030)) I* . (4.2.42)
(o]

Using equation (4.2.28) as our definition for Sm(w,,0), we obtain

2 . _ Ak
E { Sm(@a0m) } =5 © Ho(ay) s @ = wo + P (4.2.43)
0 . else
and
. 4 2
Var { Sm(wn.0) | = 6((1\55',1') ‘ z Ho(p(oa-wo)) I . (4.2.44)
’ QO

Defining our estimate for the system transmission function by equation (4.2.35) yields a

complex random variable which is approximated by
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>, Ho(p(wn-0))
K(w,,0x) + o n o
: Vp(Mﬂ)
z Ho(p(mn'mo))

0

Lo
\ \Jp(M+1)

a
Wp = Wo+ —pk

R (@no) = 3 . (4.2.45)

else

where p is a complex Gaussian random variable with zero mean and unit variance.

Finally, consider the case of applying this technique for estimating K(w,o) when
both {e(1)} and {y(1)} are observed in the presence of additive, stationary independent
white noise, as indicated schematically in Figure 4.2.1. Assume that the input observation
noise, (¢(1)}, and the output observation noise, {{(1)}, are wide sense stationary complex

Gausstan random variables such that

2.4 =
E { Lty {x(1) ) 2{0% ; ‘;lse‘z (4.2.46)
and
2. =
E{o(t)o*(1) } = {g° ? z;se 2 (4.2.47)

Further, assume that {$(t)} and {{(1)} are mutually independent, and independent of
{e(D)}).

The discrete Fourier transforms of the observed input, {r(t)}, and the observed

output, {x(t)}, are given by

K-1 .
Ri(@o = 2, e * = Exloy) + CK(ak), (4.2.48)
1=0

and
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N-1

Xn(@n) = 2 x(®) & ™ = Yn(on) + Priwn) (4.2.49)
t=0
where
Kl -i0L T 4
Cx(ak)= D lmye K=k I Fr(y-ou) dZe(y) (4.2.50)
1T=0 2n -
and
N1 -1t 4
P = 2 owe ™ =5 f FK(Y-0u) dZ4(Y) . (4.2.51)
t=0 -

Now define the random variable I'(w,,0) as

I"(@n,0) = 5 XnN(@n) R*k(04) (4.2.52)

and let

M/2

S’M((Dnyak)'—'M]Tl z I’(wn«rmvak«rm) y (4253)
m=-M/2

so that

M/2 *
SM@n0H)  + g 2 N YNOm) € k(@em)
m=-M/2
, M/2 1 *
+M+1 z ﬁYN(wmrm)(I) K(Qc+m)
m=-M/2

, M/2 *
A M+1 z ]ﬁ QN(mn+m) 8 K(Otk+m)
m=-M/2
M/2 "
]
+ Ml+l z NCN(mn+m)(I) K(Qkem) - (4.2.54)
m=-M72
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Consider the term

MR *
Fl:i. ZM/Z% CN(“)H«fm) 8 K(ak+m) (4255)

m=-

in equation (4.2.55) above. Since {{(t)} and {€(t)} are independent Gaussian random
variables,

E { :T;CN(wn) € ko } =0 (4.2.56)

and

* *
E{ [lﬁ CN((Dn) E K(ak)Ilﬁ CN((D,”J') E K(akﬂ-))’ }

2¢v.2
oG . .
- { 5 o 3=0 (4.2.57)
0 ; -else

For large M, the summation of equation (4.2.55) is approximated by a complex Gaussian

26,2
random variable with zero mean and variance aﬁfl—) Similarly, the term

M/2

*
Ml+1 2 P lﬁ CN((DTH-m) (I) K(Ok+m) (4.2.58)
m=-M

is approximated by a complex Gaussian random variable with zero mean and variance

Now consider the term

M/2 N
L lﬁ YN(wn+m) (D K(Ok+m) » (4.2.59)

and note that, since {€(1)} and {¢(1)} are independent,
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*
E { % Yn(wn) D ko } =0 . (4.2.60)
Furthermore,
* * sk
E{(lﬁYN(wn)(D K(ak))(‘gvu(wnﬂ)@ K(ak+j)) }
K =«
= 0@’ o202 X Y (5) [ ] ne e
o p -t R
Fr(@n-®o- 1) F*N(@nyj-p- 7) Fi(B-0t) Fi(B-0ti) dy d . (4.2.61)

For N and K sufficiently large,

] * *
E{ ( l,;YN(G)n) D ) ( ]NYN((DMJ‘) D y(aysy ) }

020,2 2 :
5 zo I Ho(p(@n-wo)) I 5 j=0 (4.2.62)

L 0 ; else
Therefore, the term given in equation (4.2.59) is approximated by a zero mean complex

20,2 2
Gausst: n random variable with variance B&—% > [ Ho(p(wg-wo)) 1.
o

Jur estimate for the variance of the input noise process is given by

K-1
A=y D . (4.2.63)
t=10

C : A
For K large, we may approximate 62 by
81=02+ a2 (4.2.64)

0

Our esumate for the system transmission function 1s now given by
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R (a0t = ;‘; S M(@ns0) (4.2.65)
o

or, from the discussion presented above,

o?

o + %k
ﬁ(wn,ak) = {02+0,?

Ho(p(wn‘wo))+“0+“l+u2+u3 y Wp = Wy P

Ho+tWi+H2+ M3 ; else
(4.2.66)

where Wo, i1, M2, and 3 are complex zero-mean Gaussian random variables with

variances
o2 2
t= -0,)) | 4.2,
So P(M+l)(02+0°2)§ I Ho(p(wn wu)) y (4.2.67)
ol0,2
2 = g
% P(M+1)(02+0°2) ’ (4.2.68)
020,2
- 9
2 -p(M+l)(0’2+0'°2) ’ (4.2.69)
and
Gclo 2 5
2 0 ]
o3 P(M+l)(62+o°2)20: | Ho(p(wn-00) I, (4.2.70)
respectively.

The results obtained above for frequency-smoothed estimates of K(w,ot) may be
extended to time-averaged estimates for the system transmission function. To be specific,
assume that we obtain L observations of the input and output signals of length K and N,
respectively. If the L observations of the output process are obtained in such a manner that
the wput samples producing one set of output samples are unrelated to the input samples
producing any other set of output samples then we may invoke the mixing assumption of
Section 3.1 to claim that the L. output observations are statistically independent. For each

observation, form the discrete Fourier transform of the input and output signal in
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accordance with equations (4.2.6) and (4.2.11). The estimate for the system transmission
function is obtained from

1
R (@m0 = 75 SL(@m) 4.2.71)
[e)

A, . . : : ) .
where G2 is the estimate for the input noise variance based on the LK available samples of
the input process, and

L

*
SLnow) = 2 & Yaulen) € ke - (4.2.72)
1=1

-

In equation (4.2.72), YN j(®g) and EK'I(ak) are the I-th discrete Fourier transform of the

input and output signals. Following a line of argument identical to that presented for

frequency-smoothed estimates, we obtain

2
(¢} 037
———= H (Wp-Wg))+Vo+Vi+Vo+V3 , Wy = Wy + —
Q(wn’ak)z 02+6°2 o(p n o) 0 1 27TV3 n o P
Vg+Vi+Va+vsy ; else
4.2.73)

where vy, vy, V2, and v3 are complex zero-mean Gaussian random variables with

variances
2.9
o, pumm 5 ): | Ho(p(wq-wq)) I, (4.2.74)
25,2
6,2= 004 (4.2.75)
©  pL(O°+04°) '
, 020,32
Oy = IE2+0°2‘)‘ R (4276)
and
, . 0%0,¢ 2
o, pL(o~+0 )Z FH(plwa-w0)) 17, (4.2.77)
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respectively.

Several comments can be made regarding the method for estimating K(w,a)
presented above. First, we again assumed that a complex input signal was applied to the
system under consideration. For systems in which only real signals may be applied to the
system, we could apply the real and imaginary components of the input signal to the system
independently and linearly combine the observed outputs to estimate the system
transmission function, as was described in Section 4.1. However, for a complex white
noise process, it 1s required that the real and imaginary components be independent and
identically distributed (see Koopmans, p. 263). The real and imaginary components for
the input signal could therefore be obtained from two K-length observations of data

obtained from a single white noise generator.

Secondly, we assumed that the input noise process had a flat spectrum, i.e., we
assumed that its power spectrum was constant for all frequencies. In practice, we cannot
guarantee that the input noise process has a flat spectrum. However, we could estimate the
spectrum of the input noise process, Sg(a), from the given observations, and estimate our

system transmission function by

Sm(wq,0)

A

(4.2.78)
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FIGURE 4.2.1
ESTIMATION OF K(w,a) IN THE PRESENCE OF OBSERVATION NOISE
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4.3 CHAPTER SUMMARY

In this chapter we presented two techniques for empirically characterizing linear
periodically time varying systems. The properties and limitations of both techniques were
discussed. We now turn our attention to the results of implementing these two techniques
to the characterization of several LPTV systems of interest.
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5. RESULTS OF IMPLEMENTATION OF METHODS FOR THE
CHARACTERIZATION OF LINEAR
TIME-VARYING SYSTEMS

We now briefly present the results of implementation of the methods for
characterizing linear periodically time-varying systems presented in Chapter 4.
Characterizations of a set of LPTV systems were conducted using both deterministic and
nondeterministic input signals. We begin by considering the theoretical system
transmission functions for the LPTV systems of interest.

5.1 THEORETICAL SYSTEM TRANSMISSION FUNCTIONS FOR THE
LPTV SYSTEMS OF INTEREST

A set of five LPTV systems were used to evaluate the methods for characterizing
LPTYV systems described earlier. The first two of these five systems were selected because
they represented basic elements that are commonly found in more complicated LPTV
systems. Characterization of these basic system elements is therefore a necessary first step
towards characterizing more complicated LPTV systems. The final three LPTV systems
evaluated here are complicated systems based on the interconnection of simpler system

clements.

Figure 5.1.1 presents the block diagram of the first LPTV system of interest, a
simple rate 1/2 decimator. In this system, the input signal, x(7), is sampled at output
sample times, t, such that T = 2t to produce the output signal y(t). The system response
functior k(t,t), is therefore given by

3]
~

f .
ki) = (1 Pt (5.1.1)

)

o |
w
o

Using equation (2.6.8), the system transmission function is given by

oo

Ki(w.o) = 2 -i@-200t_ 2 S(w-2rn-2a) . (5.1.2)
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This function is indicated schematically in Figure 5.1.2. For this figure, the squared
magnitude of K;(w,a) was evaluated at the set of discrete points in the (w,a) bifrequency

plane defined by
2nn
and
2wk
U = (5.1.4)

where N =128 and K =64. Note that input and output frequencies have been
normalized by n in Figure 5.1.2.

Figure 5.1.3 presents the block diagram for the second LPTV system of interest, a
simple quadrature demodulator. In this system, the input signal, x(1), is demodulated by a
complex stnusoid of frequency w, to obtain the output signal y(t). The system response
function, k(t,t), is therefore given by

“SHw-w o)t

kz([ﬁ):{ e 0 B tezlste . (5.1.5)

The system transmission function for this system is given by

oo

Kiway = D, "o (5.1.6)
{ = — oo
or
Krow.a) = z O(W-2TtN+W, L) . (5.1.7)
n=-

This system transnussion tuncuon s wdicated schematically in Figure 5.1.4. The squared

magnitude of Ky(w,o) was again evaluated at a discrete set of points in the (w,¢)
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bifrequency plars according to equations (5.1.3) and (5.1.4) with N = K = 64. Input
and output frequencies have been normalized by = in Figure 5.1.4.

Figure 5.1.5 presents the block diagram for the third LPTV sysiem of interest, a
rate 3/2 interpolation system. In this system, the input signal is up-sampled (i.e., zero-

padded) by a factor of three, passed through a LTI low pass filter, and decimated by a
factor of two. The system response funciion for the rate 3 up-sampling is given by

= L 3t =t 5.1.8
K(L.T) { Lo Sl (5.1.8)

The system transmission tunction for the rate 3 up-sampling 1s therefore given by

Ki,a) = 2 (B 2mn-a/3) . (5.1.9)

N = — o0

The overall system transmission function for the rate 3/2 interpolation system, Ky(®,Q), 1s

given by
H
Ko(w,a) = i J Ki(w.p) HP) KB.a) dp , (5.1.10)
-

or simply

Kolw.a) = Z Z 2 H(a/3+2xn) 8(w-2n(m-2n)-2a/3) . (5.1.11)

m=—ocon =00

Figure 5.1.0 schematically indicates this system transmission tunciion. Figure 5.1.7
presents a three-dimensional view of K(w.t). For these plots, the squared magnitude of
the system tansmission tunction was evaluated at a set of discrete points in the (w,a)

bifrequency plane according to equations (5.1.3) and (5.1.4) with N=96 and K=64.

Figure 5.1.8 presents a block diagram tor the tourth LPTV system of interest. a

rate 1/2 quadrature sampling system. In this system, the input signal, x(T), is demodulated
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by cos (g 1) and -1 sin (% 1), and sampled in quadrature to obtain the in-phase and
quadrature components of a digital quadrature representation for x(1) (see Baugh, 1988).

The system response function for this system is given by

b4
cos(ir) ; T = 2t

k(t,t) = (5.1.12)

. . n
-1sm(51) ot = 2t+1
0 ; else

The system transmission function for the rate 1/2 quadratur: sampling system is therefore

given by

K(w,ot) = (1-1 eio‘) Z S(w-21n-20-1t) + d(W-27n-20+71) . (5.1.13)

n= —oo

Tuis system transmission function is indicated shematically in Figure 5.1.9, with the
input and output frequencies again normalized by m. Figure 5.1.10 presents a three-

dimensional view of this system transmission function. Again, the squared magnitude of
the system transmission function was evaluated at a set of discrete points in the (®,o)

bifrequency plane according to equations (5.1.3) and (5.1.4) with N=128 and K=64.
Figure 5.1.11 presents the result of plotting the largest value of K(w,a) over all ® for each
o. In a sense, this plot gives an indication of the response of the LPTV system to each
input frequency. All frequencies have been novmalized by m. Consider that on the lines

W =20+7 (5.1.14)
and

w=20-K (5.1.i5)
the square-magnitude of K(w,w) 1s given by

| K(w,a) I = 2(1+sin o) . (5.1.16)

This function is clearly indicated in Figure 5.1.11.
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Figure 5.1.12 presents the block diagram for the fifth LPTV system of interest, a
rate 1/2 quadrature demodulator. Note that this system is a series connection of the simple
quadrature demodulator of Figure 5.1.3 with a gain of 2, a linear time-invariant low pass
filter, and the rate 1/2 decimator of Figure 5.1.1. Using the results of Section 2.4 for the
analysis of LTV network structures, we may express the system transmission function for
this LPTV system, Kj3(w,), as

T
Kxww =2 | 2Ki(B) HP) K. B . (5.1.17)

where H(PB) is the frequency response of the LTI system. Substituting equations (5.1.2)
and (5.1.7) into (5.1.17), we obtain

Kiy(w,a) = 2 2 2 H(o-@y+27tn) 8(w-2n(m-2n)+2m0-20t) . (5.1.18)

m=—ool = —oo

This system transmission function is indicated schematically in Figure 5.1.13, with the
input and output frequencies again normalized by n. Figure 5.1.14 presents a three-
dimensional view of this system transmission function, indicating the modulation of the
impulse sheet by H(P), the LTI frequency response function. For these plots, the squared
magnitude of the system transmission function was evaluated at a set of discrete points in
the (w,a) bifrequency plane according to equations (5.1.3) and (5.1.4) with N=128 and
K=64. Figure 5.1.15 presents the result of plotting the largest value of Kz(w,a) over all
w for each a.
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FIGURE 5.14
THEORETICAL SYSTEM TRANSMISSION FUNCTION FOR
A SIMPLE QUADRATURE DEMODULATOR

81




x(1) —— 13 - LPF ———/——> y(t)

+2

AS-91-373
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5.2 CHARACTERIZATION via DETERMINISTIC SIGNALS

The method of characterizing LPTV systems using deterministic signals described
in Section 4.1 was applied to the five systems of interest. A complex sinusoid of a
specific frequency was generated and applied to the LPTV system of interest. A
512-sample record of the system output was obtained, and a minimum 3-term Blackman-
Harris windowing function was then applied to this output record (see Harris, 1978). The
512-point discrete Fourier transform of this windowed output data record was computed.
The resulting DFT was smoothed using M = 8 in order to reduce the number of points in
the resulting estimate for K(w,a), and so simplify the plotting of the data. This 64-point
smoothed DFT was used as the estimate for the system transmis .ion function for the
specific input frequency. The procedure was then repeated for each of K discrete input

. 2n
frequencies, oy = X where K was chosen so that N/K = p, the rate of the LPTV system

under evaluation.

Figures 5.2.1 and 5.2.2 present the estimated system transmission functions for
the simple rate 1/2 decimator and the simple quadrature demodulator obtained using this
method. Note the close agreement between these estimates and the theoretical system
transmission functions of Figures 5.1.2 and 5.1.4. Figure 5.2.3 presents the estimated
system transmission function for the rate 3/2 interpolator as a logarithmic contour plot.
Figure 5.2.4 presents a three-dimensional view of this estimated system transmission
function. Figure 5.2.5 presents the estimated system transmission function for the
rate 1/2 quadrature sampling system. Figure 5.2.6 presents a three-dimensional view of
the estimated transmission function. Figure 5.2.7 presents the result of plotting the largest
value of the estimate for K(w.a) over all o for each . Note the close agreement between
the estimated system transmission function and the theoretical value plotted in
Figures 5.1.9, 5.1.10 and 5.1.11. Figure 5.2.8 presents the estimated system
transmission function for the rate 1/2 quadrature demodulator. In this contour plot, the
magnitudes are presented in logarithmic form. Figure 5.2.9 presents a three-dimensional
view of the estimated system transmission function for the rate 1/2 quadrature
demodulator. Figure 5.2.10 presents the result of plotting the largest value of K(w,a) over
all w for each a. Again there is close agreement between the estimated sys:em transmission

function and the theoretical values presented in Figures 5.1.13, 5.1.14, and 5.1.15.

A simulation of the effects of quadrature phase error between the real and imaginary

components of the input reference sinusoid was also conducted. Specifically, the real and
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imaginary parts of the input reference sinusoid were generated and applied separately to the
input of the rate 1/2 quadrature demodulator. A quadrature phase error of 1° was

introduced between the real and imaginary components of the input reference sinusoid.
From the discussion of Section 4.1, we would expect to see the tcrmg K(w,-a) appear in
our estimate, whcrcg is roughly -41 dB. Figure 5.2.11 presents a contour plot of the

logarithm of the estimated system transmission function obtained using the given reference
sinusoids. Figure 5.2.12 presents the result of plotting the largest value of K(w,a) over
all w for each a. From these two figures we note that quadrature phase error in the input

reference sinusoids does indeed lead to the term g K(w,-a) in our estimated system

transmission function.
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5.3 CHARACTERIZATION via NONDETERMINISTIC SIGNALS

The method of characterizing LPTV systems using nondeterministic input signals
was used to estimate the system transmission functions for the five LPTV systems of
interest. In each case, a Gaussian input sequence was applied to the system of interest, and
an estimate of the system transmission function was obtained by the appropriate time and
frequency smoothing of the discrete spectral components. Normalization of the estimated
system transmission function by the estimated input noise power spectrum was used, as
described in Section 4.2.

Figure 5.3.1 presents a contour plot of the logarithm of the estimated system
transmission function for the simple rate 1/2 decimator. For this simulation, the input DFT
length, K, was 512, the output DFT length, N, was 1024, the frequency smoothing length,
M, was 8, and the number of averages, L, was 512. Figure 5.3.2 presents the contour
plot of the logarithm of the estimated system transmission function for the simple
quadrature demodulator. For this simulation, K=N=512, M=8, and L=512.

Figure 5.3.3 presents a contour plot of the logarithm of the estimated system
transmission function for the rate 3/2 interpolator. Figure 5.3.4 presents a three-
dimensional view of this estimate. For this simulation, K=512, N=768, M=8, and L=512.

Figure 5.3.5 presents a contour plot of the logarithm of the estimated system
transmission function for the rate 1/2 quadrature sampling system. Figure 5.3.6 presents
a three-dimensional view of this estimate. Figure 5.3.7 presents the result of plotting the
largest value of K(w,a) over all w for each a. For this simulation, K=512, N=1024,
M=8, and L=512.

Figure 5.3.8 presents a contour plot of the logarithm of the estimated system
transmission function for the rate 1/2 quadrature demodulator. Figure 5.3.9 presents a
three-dimensional view of this estimate. Figure 5.3.10 presents the result of plotting the
largest value of K(w,a) over all o for each a.. For this simulation, K=512, N=1024,
M=8, and L=512. Note that we obtain reasonably good agreement with the theoretical

response presented in Section 5.1.

A simulation of the effects of using separate real and imaginary input signal

components was also conducted. For this simulation, a single Gaussian noise sequence
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was generated and applied to the input of the rate 1/2 quadrature demodulation system.
Alternating records of the observed input and output sequences were used to produce the
real and imaginary parts of the estimated system transmission function. As in the previous
simulation for the rate 1/2 quadrature demodulation system, K=512, N=1024, M=8, and
L=512. Figure 5.3.11 presents the contour plot of the logarithm of the estimated system
transmission function obtained from this simulation. Figure 5.3.12 presents a three-
dimensional view of the estimate.

98




1 TN *'f

K
) 0 oo‘ “ ’

<
n

0 , & Q S
%/".\’ 3 ‘)‘ cﬁﬂ%"%o

v
g

2 ’*w@*% .

Output Frequency
=)

My SV
Q, PRGN o
' . y tw ‘ 'g
Ve %ﬁ

Input Frequency

AS-91-396
FIGURE 5.3.1
ESTIMATED SYSTEM TRANSMISSION FUNCTION FOR THE SIMPLE
RATE 1/2 DECIMATOR

o
W

Output Frequency
=)

-0.50

Input Frequency

AS-91-397
FIGURE 5.3.2
ESTIMATED SYSTYEM TRANSMISSION FUNCTION FOR THE SIMPLE
QUADRATURE DEMODULATOR

99




.é{ p

70)/. A&

o
<?

Kouonbaiy inding

Input Frequency

AS-91-398

FIGURE 5.3.3
ESTIMATED SYSTEM TRANSMISSION FUNCTION FOR THE RATE 3/2

INTERPOLATOR

AS-91-399

FIGURE 5.34
ESTIMATED SYSTEM TRANSMISSION FUNCTION FOR THE RATE 3/2
INTERPOLATOR

100




1 ~— T
.f@ ° N ?:Esp@
() e [} L 2 6
W= s\ [
.% -99 l..d‘

R e e s o

Qutput Frequency

Input Frequency

AS-91-400
FIGURE 5.3.5
ESTIMATED SYSTEM TRANSMISSION FUNCTION FOR THE RATE 1/2
QUADRATURE SAMPLING SYSTEM

AS-91-401

FIGURE 5.3.6
ESTIMATED SYSTEM TRANSMISSION FUNCTION FOR THE RATE 1/2
QUADRATURE SAMPLING SYSTEM

101




System Response (dB)

0 0.5 ]

Input Frequency

AS-91-402
FIGURE 5§.3.7
ESTIMATED SYSTEM RESPONSE FOR THE RATE 1/2 QUADRATURE
S5AMPLING SYSTEM

o R G 7 e I Y U S S R 47
yé/f\\ M‘”’g ?%“ TS 2o§?@éfﬂ%a%?4
O e DA %g"; g
nﬂ' Y = '

(/70
N
i)f?oég“ g/(%/ 0)/ :O ' 5!
s S AT e
z  CALSOK b2 ey
%‘ Zﬁ"gv \ ‘):\ A% ’ \
R a0
© 053;&? ) 5504,

63 6\ '
%@wﬁ? o
G PENTRNS

/

y 0 (< #
V) N a -~y & s
‘ (r <H y? LOQ ,.I
‘ TIT D, 07\"& i [ '
0

-1
Input Frequency
AS-91-403
FIGURE 5.3.8

ESTIMATED SYSTEM TRANSMISSION FUNCTION FOR THE RATE 1/2
QUADRATURE DEMODULATOR

102




AS-91-404

FIGURE 5.3.9
ESTIMATED SYSTEM TRANSMISSION FUNCTION FOR THE RATE 1/2

QUADRATURE DEMODULATOR

10 — e e S —
5 T e ‘“\\
% 0
3
s -5
a,
3 ‘
“ -10
£
Z
Q1S
%0}
220 . A . iy g '3’:‘3\\
‘/\" 'Y'/\e N ’ /\
225 - . o L o
-1 -0.5 0 0.5 1
Input Frequency
AS-91-405

FIGURE 5.3.10
ESTIMATED SYSTEM RESPONSE FOR THE RATE 1/2 QUADRATURE
DEMODULATOR

103




Output Frequency

Input Frequency

AS-91-406
FIGURE 5.3.11
ESTIMATED SYSTEM TRANSMISSION FUNCTION FOR THE RATE 1/2
QUADRATURE DEMODULATION SYSTEM USING REAL INPUT
SIGNALS

AS-91-407

FIGURE 5.3.12
ESTIMATED SYSTEM TRANSMISSION FUNCTION FOR THE RATE 1/2
QUADRATURE DEMODULATION SYSTEM USING REAL INPUT
SIGNALS

104




5.4 CHAPTER SUMMARY

In this chapter, the techniques for characterizing LPTV systems described in
Chapter 4 were applied to several systems of interest. The consequences of quadrature
phase error and independent application of the real and imaginary components of the input
signal were also demonstrated.
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6. CONCLUSIONS

In this paper we have presented two techniques for the empirical characterization of
discrete-time linear periodically time-varying systems. These techniques were developed
amid a framework o{ concepts related to the analysis of discrete-time LPTV systems and to
the signals produced by such systems. The results of applying these techniques to several
LPTYV systems of interest were also presented.

From the tests presented in Chapter 5, we see that characterization of LPTV
systems using deterministic sinusoidal reference inputs provides an accurate estimate of the
system transmission function only when the quadrature phase error between the real and
imaginary components of the reference input is maintained within some tight limit over the
analysis bandwidth of interest. In those situations where we may apply only real input
signals, so that the real and imaginary components must be applied separately, this
requirement may place a severe limitation on the design of the reference signal generator.
In contrast, the use of non-deterministic input signals for characterization of LPTV systems
may proceed by applying independent real and imaginary input signal components to the
system of interest. The design of the reference signal generator is therefore greatly
simplified.

In conclusion, the characterization of discrete-time LPTV systems using
deterministic signals is appropriate in those situations where a fiite estimate of the system
transmission function is required at a particular frequency, or across some relatively narrow
band of frequencies. The use of non-deterministic signals for LPTV system
characterization is appropriate in those situations where an estimate of the system
transmission function is required over a broad range of frequencies, or where the direct

application of a reference sinusoid would be impractical.
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